- 59.				1	
Reg. No.:					TE

Question Paper Code: 41303

MECH -II

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2018

First Semester

Mechanical Engineering
MA 6151 - MATHEMATICS - I

Common to Mechanical Engineering (Sandwich) Aeronautical Engineering/ Agriculture Engineering/Automobile Engineering/Biomedical Engineering/Civil Engineering/Civil Engineering and Computer Based Construction/Computer Science and Engineering/Computer and Communication Engineering/Electrical and Electronics Engineering/Electronics and Communication Engineering/ Electronics and Instrumentation Engineering/Environmental Engineering/ Geoinformatics Engineering/Industrial Engineering/Industrial Engineering and Management/Instrumentation and Control Engineering/Manufacturing Engineering/Material Science and Engineering/Mechanical and Automation Engineering/Mechatronics Engineering/Medical Electronics/Metallurgical Engineering/Petrochemical Engineering/Production Engineering/Robotics and Automation Engineering/B.E./B.Tech. (Common to all Branches except Marine Engg.)/Bio Technology/Chemical Engineering/Chemical and Electrochemical Engineering/Fashion Technology/Food Technology/Handloom and Textile Technology/Industrial Bio Technology/Information Technology/Leather Technology/ Petrochemical Technology/ Petroleum Engineering/Pharmaceutical Technology/Plastic Technology/Polymer Technology/Rubber and Plastics Technology/Textile Chemistry/Textile Technology/Textile Technology (Fashion Technology)/Textile Technology (Textile Chemistry)

(Regulations 2013)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions.

PART - A

 $(10\times2=20 \text{ Marks})$

- 1. Find the eigen values of the matrix $A = \begin{pmatrix} 1 & 3 & 4 \\ 0 & 2 & 5 \\ 0 & 0 & 3 \end{pmatrix}$ and hence find the eigen values of A^{-1} .
- 2. Discuss the nature of the quadratic form $2x^2 + 2xy + 3y^2$.

- 3. State the necessary condition for the convergence of series of positive terms.
- 4. Define absolutely convergent and conditionally convergent of a series.
- 5. Find the curvature of the curve $2x^2 + 2y^2 + 5x 2y + 1 = 0$.
- 6. List two important properties of the evolute.
- 7. If $x = r^2 \theta^2$, $y = 2r \theta$ find $\frac{\partial r}{\partial x}$.
- 8. When is a function said to be stationary at a point (x, y)?
- 9. Evaluate $\int_{-1}^{2} \int_{x}^{x+2} dy dx$.
- 10. Evaluate $\int_0^{2\pi} \int_0^{\frac{\pi}{2}} \int_0^4 r^3 \sin\theta dr d\theta d\phi$.

PART - B

(5×16=80 Marks)

11. a) Verify Cayley-Hamilton theorem for the matrix $A = \begin{pmatrix} 1 & 2 & -2 \\ 2 & 5 & -4 \\ 3 & 7 & -5 \end{pmatrix}$ and hence find A^{-1} .

(OR)

b) Reduce the following quadratic form to a canonical form by orthogonal reduction and find the rank, index signature and the nature of the quadratic form:

$$(-x^2 + y^2 + 4yz + 4zx).$$

(8+2+2+2+2)

- 12. a) i) Use integral test to check the convergence of the series $\sum_{n=1}^{\infty} \frac{1}{x^n + x^{-n}}$ (8)
 - ii) Test for the convergence of the series $\sum_{n=1}^{\infty} \frac{n^2}{3^n}$ by D'Alembert's Ratio test. (8)
 - b) i) Discuss the convergence of the series $\frac{5}{2} \frac{7}{4} + \frac{9}{6} \frac{11}{8} + \dots$ by Leibnitz's rule. (8)
 - ii) Test $\sum_{n=2}^{\infty} \frac{(-1)^n}{n(\log n)^2}$ for convergence and absolute convergence. (8)

- 13. a) i) Find the circle of the curvature at (0, 0) on $x + y = x^2 + y^2 + x^3$. (8)
 - ii) Find the evolute of the four cusped hypocycloid $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ (8)
 - b) i) Find the envelope of $\frac{x}{a} + \frac{y}{b} = 1$ subject to $a^n + b^n = c^n$ given c is a known constant. (8)
 - ii) Considering the evolute of a curve as the envelope of the normals, find the

evolute of
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
. (8)

14. a) i) If $f_1 = u - x - y - z = 0$, $f_2 = uv - y - z = 0$, $f_3 = uvw - z = 0$ then prove that

$$\frac{\partial(\mathbf{x}, \mathbf{y}, \mathbf{z})}{\partial(\mathbf{u}, \mathbf{v}, \mathbf{w})} = \mathbf{u}^2 \mathbf{v}$$
 (8)

ii) Find the Taylors series expansion for $f(x, y) = x^2 + y^2 + 2xy$ at (1, 1) upto second degree terms. (8)

(OR)

- b) i) Find the maxima and minima of xy(a x y). (8)
 - ii) The temperature u(x, y, z) at any point in space is $u = 400 \text{ xyz}^2$. Find the highest temperature on surface of the sphere $x^2 + y^2 + z^2 = 1$. (8)
- 15. a) i) Change the order of integration in $I = \int_{0}^{a} \int_{0}^{\sqrt{a^2-x^2}} (x^2 + y^2) dy dx$. (4)
 - ii) Evaluate $\iint_A (x^2 + y^2) dxdy$ where A is the area bounded by the curves

$$x^2 = y$$
, $x = 1$, $x = 2$ and the x axis. (12)

(OR)

- b) i) Evaluate $\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dxdy$ and hence evaluate $\int_0^\infty e^{-x^2} dx$. (6+2)
 - ii) Find the volume of the tetrahedron bounded by the coordinate planes and $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$. (8)

- (B) In a large state of the four model to produce the state of the sta
- b) If Find the excellent of $\frac{x}{a} + \frac{y}{b} = 1$ subject to $u^{x} + b^{x} = e^{x}$ given e is a known (8)
 - ill Yumidation the evolute of a curve on the envelope of the covarie, find the
- $T = \frac{|S|}{4} \times \frac{|S|}{2} \times \frac{|S|}{2} \text{ To extra locus}$
- $(4.31) \quad \text{if } f_1 = u u y u = 0, \ f_2 = uv y u = 0. \ f_3 = uvw u = 0 \text{ then prove that}$
- $v^{i}v = \frac{Gv.v.u55}{Gv.v.u55}$
- at Find the Taylors series expansion for $f(x,y)=x^0+y^2+2xy$ at (1, 1) upon accoud degree terms.
 - 780
- (a) Pind the maxima and minima of ayla a y).
- (c) The temperature size y: x) at may point in apam is u = 400 xys². Find the buginnst temperature on ausfinic of the sphere x² + y² + z² = 1.
- (6) if this gentle order of integration in 1 = \(\int_{ij}^{(ij)} \text{(x' + y') dydx'}\)
 - s) Evaluatin $\prod (x' + y')$ dady where A is the area bounded by the curves
- (E1). Annual than x = y, y = 1, y = 2 and than x = y, z = 1.
 - (2
- (i) Find the volume of the lateshedron bounded by the contditute planes
 - $-1 = \frac{n}{n} + \frac{T}{n} + \frac{n}{n} \frac{1}{n}$ (18)